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Abstract. In this paper we examine two classes of nonlinear hyperbolic initial boundary
value problems with nonmonotone multivalued boundary conditions characterized by the
Clarke subdifferential. We prove two existence results for multidimensional hemivariational
inequalities: one for the inequalities with relation between reaction and velocity and the
other for the expressions containing the reaction–displacement law. The existence of weak
solutions is established by using a surjectivity result for pseudomonotone operators and a
priori estimates. We present also an example of dynamic viscoelastic contact problem in
mechanics which illustrate the applicability of our results.
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1. Introduction

In this paper we consider dynamic hemivariational inequalities involving
nonmonotone and possibly multivalued relations as boundary conditions.
Such inequalities result from the d’Alembert principle for dynamic mechan-
ical systems. The notion of hemivariational inequality was introduced by
Panagiotopoulos in the early eighties as variational formulation of mechan-
ical problems with the nonsmooth and nonconvex energy functionals. This
formulation is based on the notion of the Clarke subdifferential for locally
Lipschitz functions. The mathematical results on the stationary hemivari-
ational inequalities can be found in Panagiotopoulos [30,31,34], Naniewicz
and Panagiotopoulos [28], Motreanu and Panagiotopoulos [27], Haslinger
et al. [14] and the references therein. As concerns the parabolic hemi-
variational inequalities, we refer to Carl [5,6], Liu [16], Miettinen [17],
Miettinen and Panagiotopoulos [18,19], Migorski [21–23] and Migorski
and Ochal [26]. We mention that the study of hyperbolic hemivariational
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inequalities was initiated by Panagiotopoulos [32–34] who considered mod-
els characterized by one-dimensional reaction–velocity laws. The hyperbolic
hemivariational problems with a subdifferential relation depending on the
first order derivative were considered by Goeleven et al. [12], Haslinger
et al. [14] and Gasinski [10] while the dynamic inequalities with a multi-
valued term depending on the unknown function were treated by Panagio-
topoulos and Pop [35], Haslinger et al. [14], Xingming [37] who used the
Galerkin method and by Gasinski and Smolka [11], Goeleven and Motre-
anu [13] (one dimensional wave equation), Migorski [22] and Ochal [29].

The optimal control problems for dynamical hemivariational inequali-
ties have been studied only recently (cf. Gasinski [10], Migorski [20,22],
Migorski and Ochal [25] and Ochal [29]). For a review of other results on
hemivariational inequalities cf. Migorski [24].

In the present paper we treat two types of dynamic hemivariational
inequalities of hyperbolic type with the subdifferential boundary condi-
tions. The considered cases are following: the hemivariational inequal-
ity with the multivalued relations between reaction and displacement and
the hemivariational inequality containing the multivalued reaction–velocity
laws. More precisely the first type of hemivariational inequalities studied in
this paper is of the form:






〈u′′(t)+A(t, u′(t))+Bu(t)−f (t), v〉V ∗×V +
+ ∫

�
j 0(x, t, γ u(t);γ v)dσ(x)�0 for all v ∈V and a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1,

(P)

where A(t, ·) : V →V ∗ is a nonlinear operator, B is a linear bounded oper-
ator from V into its dual V ∗, f ∈ V∗, u0 ∈ V , u1 ∈ H , � is a regular part
of the boundary of an open bounded subset � of R

N , j 0(x, t, u;v) is the
Clarke directional derivative of a locally Lipschitz function j (x, t, ·) : R

N →
R at point u∈ R

N and the direction v ∈ R
N , γ : H 1(�;R

N)→L2(∂�;R
N),

V =L2(0, T ;V ), V is a closed subspace of H 1(�;R
N), H =L2(�;R

N) and
V ⊂ H ⊂ V ∗ form of an evolution triple of spaces. In the second type
of hemivariational inequalities we work with a locally Lipschitz function
which depends on the first order time derivative of u.

We would like to underline that our existence results (Theorems 6
and 11) are applicable to hemivariational inequalities with multidimen-
sional superpotential laws, i.e., for hemivariational inequalities on vector-
valued function spaces. The idea of the proofs of Theorems 6 and 11
consists of two steps. Firstly, we assume a regular data u1 ∈V and we for-
mulate the problem (P) as an evolution inclusion of first order. Next we
use the surjectivity result (see Theorem 2.1 of [36]) and we get the existence
of solutions of the first order problem. In the second step we remove the
restriction on the initial datum and we prove the result for u1 ∈H .
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Moreover, in contrast to [10,12,14], we consider the nonlinear damping
term which satisfies a general pseudomonotonicity condition, we do not
assume the coercivity of the linear operator B and we suppose less restric-
tive hypotheses on a locally Lipschitz function generating the subdifferen-
tial relation. In this way we avoid several restictive assumptions needed in
the above mentioned papers.

The paper is organized as follows. After the preliminary material of
Section 2, in Section 3 we introduce two classes of boundary hemivari-
ational inequalities and their formulations as operator evolution inclusions.
The main existence theorems with the crucial lemmas are established in
Section 4. The proofs of auxiliary results are provided in Section 5. Finally,
in the last section we consider the applications to contact problems in
mechanics.

2. Preliminaries

In this section we fix the notation and recall some definitions needed in the
sequel. Given a reflexive Banach space Y , we denote by 〈·, ·〉Y the pairing
between Y and its dual Y ∗. We recall some definitions for a multivalued
operator T : Y →2Y ∗

(see e.g. Browder and Hess [4] and Zeidler [38]).
An operator T is said to be pseudomonotone if it satisfies

(a) for every y ∈Y , Ty is a nonempty, convex and weakly compact set in
Y ∗;

(b) T is u.s.c. from every finite dimensional subspace of Y into Y ∗

endowed with the weak topology; and
(c) if yn → y weakly in Y , y∗

n ∈ Tyn and lim sup 〈y∗
n, yn −y〉

Y
� 0, then

for each z ∈ Y there exists y∗(z) ∈ Ty such that 〈y∗(z), y − z〉Y �
lim inf 〈y∗

n, yn − z〉
Y

.

Let L : D(L) ⊂ Y → Y ∗ be a linear densely defined maximal monotone
operator. An operator T is said to be pseudomonotone with respect to D(L)

(shortly L pseudomonotone) if and only if (a) and (b) hold and

(d) if {yn}⊂D(L) is such that yn →y weakly in Y , Lyn →Ly weakly in Y ∗,
y∗

n ∈ T (yn), y∗
n → y∗ weakly in Y ∗ and lim sup 〈y∗

n, yn〉Y � 〈y∗, y〉Y , then
(y, y∗)∈Graph(T ) and 〈y∗

n, yn〉Y →〈y∗, y〉Y .

An operator T is said to be coercive if there exists a function c : R
+ →

R with c(r) → ∞ as r → ∞ such that 〈y∗, y〉Y � c (||y||Y ) ||y||Y for every
(y, y∗)∈Graph(T ). A single-valued operator T : Y →Y ∗ is said to be demi-
continuous if it is continuous from Y to Y ∗ endowed with weak topol-
ogy. T : Y →Y ∗ is pseudomonotone if for each sequence {yn}⊆Y such that
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it converges weakly to 2y0 ∈ Y and lim sup〈Tyn, yn − y0〉Y � 0, we have
〈Ty0, y0 −y〉Y � lim inf〈Tyn, yn −y〉Y for all y ∈Y .

The following surjectivity result (see Papageorgiou, Papalini and Renzacci
[36]) for L pseudomonotone operators will be used in our existence theo-
rems.

PROPOSITION 1. If Y is a reflexive, strictly convex Banach space,
L : D(L) ⊂ Y → Y ∗ is a linear densely defined maximal monotone operator
and T : Y →2Y∗\{∅} is bounded coercive and pseudomonotone with respect to
D(L), then L + T is surjective.

Finally, we recall the definitions of the generalized directional derivative
and the generalized gradient of Clarke for a locally Lipschitz function h :
E →R, where E is a Banach space (see Clarke [8]). The generalized direc-
tional derivative of h at x in the direction v, denoted by h0(x;v), is defined
by

h0(x;v)= lim
y→x

sup
t↓0

h(y + tv)−h(y)

t
.

The generalized gradient of h at x, denoted by ∂h(x), is a subset of a dual
space E∗ given by ∂h(x)={ζ ∈E∗ : h0(x;v)� 〈ζ, v〉E∗×E for all v ∈E}. The
locally Lipschitz function h is called regular (in the sense of Clarke) at x ∈
E if for all v∈E the one-sided directional derivative h′(x;v) exists and sat-
isfies h0(x;v)=h′(x;v) for all v ∈E.

3. Problem Formulation

In this section we state the hypotheses on the data of the problems and we
present some auxiliary material that will be used in the proofs of our main
results in Section 4.

Let � be an open bounded subset of R
N with a Lipschitzean bound-

ary ∂� and let � be an open subset of ∂� with positive surface mea-
sure. Let V = {v ∈ H 1(�;R

N) : γ v = 0 on ∂� \ �} and H = L2(�;R
N),

where γ : H 1(�;R
N)→L2(∂�;R

N) denotes the trace operator. Identifying
H with its dual, we have an evolution triple V ⊂ H ⊂ V ∗ (see Lions [15],
Zeidler [38]) with dense, continuous and compact embeddings. We denote
by 〈·, ·〉V ∗×V the duality of V and its dual V ∗ as well as the inner prod-
uct on H , by || · ||, | · | and || · ||V ∗ the norms in V , H and V ∗, respectively.
In what follows we need the spaces V = L2(0, T ;V ), H = L2(0, T ;H) and
W ={w ∈V : w′ ∈V∗}, where the time derivative involved in the definition
of W is understood in the sense of vector valued distributions. Equipped
with the norm ||v||W = ||v||V + ||v′||V∗ the space W becomes a separable
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reflexive Banach space. We also have W ⊂V ⊂H⊂V∗. The duality for the
pair (V,V∗) is denoted by 〈〈f, v〉〉V∗×V = ∫ T

0 〈f (t), v(t)〉dt . It is well known
(cf. Lions [15] and Zeidler [38]) that the embeddings W ⊂ C(0, T ;H) and
{w ∈V : w′ ∈W}⊂C(0, T ;V ) are continuous.

We consider the following two types of dynamic hemivariational inequal-
ities.

PROBLEM (I). Find u∈V such that u′ ∈W and






〈u′′(t)+A(t, u′(t))+Bu(t)−f (t), v〉V ∗×V

+ ∫

�
j 0(x, t, γ u(t);γ v)dσ(x)�0 for all v ∈V and a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1,

PROBLEM (II). Find u∈V such that u′ ∈W and






〈u′′(t)+A(t, u′(t))+Bu(t)−f (t), v〉V ∗×V

+ ∫

�
j 0(x, t, γ u′(t);γ v)dσ(x)�0 for all v ∈V and a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1.

The hypotheses on the data are the following:

H(A) : A : (0, T )×V →V ∗ is an operator such that

(i) t →〈A(t, u), v〉 is measurable on (0, T ) for all u, v ∈V ;
(ii) ||A(t, v)||V ∗ �a(t)+b||v|| a.e. t , for v∈V with a∈L2(0, T ), a�0,

b>0;
(iii) 〈A(t, v), v〉�α||v||2 a.e. t ∈ (0, T ), for all v ∈V with α >0;
(iv) v →A(t, v) is pseudomonotone for every t ∈ (0, T ).

H(B) : B : V →V ∗ is a bounded, linear, monotone and symmetric opera-
tor, (i.e. B ∈L(V ,V ∗), 〈Bv, v〉�0 for all v ∈V , 〈Bv,w〉=〈Bw,v〉 for
all v, w ∈V ).

H(j) : j : � × (0, T )×R
N →R is a function such that

(i) j (·, ·, ξ) is measurable for all ξ ∈R
N and j (·, t,0)∈L1(�);

(ii) j (x, t, ·) is locally Lipschitz for all x ∈�, t ∈ (0, T );
(iii) |η|RN � c (1+|ξ |RN ) for all η ∈ ∂j (x, t, ξ), t ∈ (0, T ), x ∈ � with

c>0.

(H0) : f ∈V∗, u0 ∈V , u1 ∈H .

In the hypothesis H(j) the symbol ∂j denotes the Clarke subdifferential of
j with respect to the variable ξ .
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We begin with an auxiliary result on the properties of the functional
J : (0, T )×L2(�;R

N)→R given by

J (t, v)=
∫

�

j (x, t, v(x))dσ(x), t ∈ (0, T ), v ∈L2(�;R
N). (1)

LEMMA 2. Assume that j : � × (0, T )×R
N →R satisfies hypothesis H(j).

Then the functional J (t, ·) : L2(�;R
N) → R given by (1) is well defined and

locally Lipschitz (in fact, Lipschitz on bounded subsets of L2(�;R
N)), its

generalized gradient satisfies

ζ ∈ ∂J (t, v) �⇒ ||ζ ||L2(�;RN) � c1
(
1+||v||L2(�;RN)

)
, (2)

where

c1 =
√

2c max{1,
√

measN−1(�)} (3)

and for its generalized directional derivative we have

J 0(t, u;v)�
∫

�

j 0(x, t, u(x);v(x))dσ(x) for t ∈ (0, T ), u, v ∈L2(�;R
N).

(4)

Moreover, if additionally either j (x, t, ·) or −j (x, t, ·) is regular in the sense
of Clarke, then J (t, ·) or −J (t, ·) is regular, respectively,

J 0(t, u;v)=
∫

�

j 0(x, t, u(x);v(x))dσ(x) for t ∈ (0, T ), u, v ∈L2(�;R
N)

(5)

and

∂(J ◦γ )(t, v)=γ ∗ ◦ ∂J (t, γ v) for t ∈ (0, T ), v ∈V, (6)

where γ ∗ : L2(�;R
N)→V ∗ denotes the adjoint operator of γ given by

γ ∗z(v)=
∫

�

z(x) γ v(x)dσ(x) for v ∈V and z∈L2(�;R
N).

Proof. The well posedness of J follows from Theorem 2 of Aubin and
Clarke [2]. The estimate in (2) and the inequality (4) are consequences of
H(j)(iii) and the Fatou lemma, respectively. If either j (x, t, ·) or −j (x, t, ·)
is regular, we have
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∫

�

j 0(x, t, u(x);v(x))dσ(x)�J 0(t, u;v) for t ∈ (0, T ), u, v ∈L2(�;R
N)

which together with (4) entails (5). Finally, since γ : V →L2(�;R
N) is lin-

ear and continuous, we can apply the chain rule (see Theorem 2.3.10 of
Clarke [8]) to calculate the subdifferential of the composition which, in
view of the regularity of either J (x, t, ·) or −J (x, t, ·), implies the equal-
ity (6).

First we consider the problem (I) for which we introduce an operator
inclusion which will be solved using a surjectivity result. We associate with
(I) the following auxillary inequality problem:






find u∈V with u′ ∈W such that
〈u′′(t)+A(t, u′(t))+Bu(t)−f (t), v〉V ∗×V +J 0(t, γ u(t);γ v)�0

for all v ∈V, a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1,

(7)

where J 0(t, u;v) denotes the directional derivative of J (t, ·) at a point
u∈L2(�;R

N) in the direction v ∈L2(�;R
N).

In what follows we need the space Z =Hδ(�;R
N) with a fixed δ ∈ ( 1

2 ,1).
Denoting by i : V →Z the embedding injection and by γ̄ : Z →L2(�;R

N)

the trace operator, for all v∈V we have γ v= γ̄ (iv). For simplicity we omit
the notation of the embedding i and we write γ v = γ̄ v for v ∈ V . So we
have V ⊂ Z ⊂ H ⊂ Z∗ ⊂ V ∗ with all embeddings being compact. This also
implies that W ⊂V ⊂Z ⊂H⊂Z∗ ⊂V∗, where Z =L2(0, T ;Z). We consider
now the following inclusion:






find u∈V with u′ ∈W such that
u′′(t)+A(t, u′(t))+Bu(t)+ γ̄ ∗ (∂J (t, γ̄ u(t)))�f (t) a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1. (8)

DEFINITION 3. A function u ∈ V solves (8) if and only if u′ ∈ W and
there exists η∈Z∗ such that






u′′(t)+A(t, u′(t))+Bu(t)+η(t)=f (t) a.e. t ∈ (0, T )

η(t)∈ γ̄ ∗ (∂J (t, γ̄ u(t))) a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1.

REMARK 4. We notice that if hypothesis H(j) holds, then every solu-
tion to problem (7) is a solution to the problem (I ) and every solution to
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(8) is also a solution to (7). These facts are easy consequences of inequal-
ity (4) of Lemma 2 and the definition of the Clarke subdifferential. If addi-
tionally either j (x, t, ·) or −j (x, t, ·) is regular, then the problems (I ), (7)
and (8) are equivalent (cf. (5) and (6) of Lemma 2).

4. Existence Results

In this section we deliver existence results for problems (I) and (II). First
we consider the problem (I) and in view of Remark 4, we establish the exis-
tence result for the problem (8). We start with a priori estimate for solu-
tions of the problem (8).

LEMMA 5. Suppose that hypotheses H(A), H(B), H(j), (H0) hold and

α

2
>c1β

2T ‖γ̄ ‖2, (H1)

where β >0 is the embedding constant of V into Z and c1 is given by (3). If
u is a solution to (8), then there exists a constant C >0 such that

‖u‖C(0,T ;V ) +‖u′‖W ≤C (1+‖u0‖+ |u1|+‖f ‖V∗) . (9)

Proof. Let u be a solution to (8). We notice that u∈C(0, T ;V ) and u(t)=
u0 +∫ t

0 u′(s)ds in V with u′ ∈W . Taking the duality brackets with u′(t)∈V

and integrating over (0, t) for any t ∈ (0, T ), we have

∫ t

0
〈u′′(s), u′(s)〉V ∗×V ds +

∫ t

0
〈A(s, u′(s)), u′(s)〉V ∗×V ds

+
∫ t

0
〈Bu(s), u′(s)〉V ∗×V ds +

∫ t

0
〈ξ(s), u′(s)〉V ∗×V ds

=
∫ t

0
〈f (s), u′(s)〉V ∗×V ds

with ξ(s)∈ γ̄ ∗(∂J (t, γ̄ u(t))) for a.e. s ∈ (0, t). From the integration by parts
formula (Proposition 23.23(iv), pp. 422–423 of Zeidler [38]), we get

∫ t

0
〈u′′(s), u′(s)〉V ∗×V ds = 1

2
|u′(t)|2 − 1

2
|u1|2.
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Since B is symmetric and monotone, it follows that

∫ t

0
〈Bu(s), u′(s)〉V ∗×V ds = 1

2

∫ t

0

d
ds

〈Bu(s), u(s)〉V ∗×V ds

= 1
2
〈Bu(t), u(t)〉V ∗×V − 1

2
〈Bu0, u0〉V ∗×V

�−1
2
‖B‖L(V ,V ∗)‖u0‖2.

Moreover, using the Young inequality with some ε >0, we have

∫ t

0
〈f (s), u′(s)〉V ∗×V ds �

∫ t

0
‖f (s)‖V ∗‖u′(s)‖ds

� ε2

2
‖u′‖2

L2(0,t;V )
+ 1

2ε2
‖f ‖2

V∗ .

From the above bounds and using the coercivity of A (see H(A)(iii)), we
obtain

1
2
|u′(t)|2 − 1

2
|u1|2 +α‖u′‖2

L2(0,t;V )
− 1

2
‖B‖L(V ,V ∗)‖u0‖2

� ε2

2
‖u′‖2

L2(0,t;V )
+ 1

2ε2
‖f ‖2

V∗ −
∫ t

0
〈ξ(s), u′(s)〉V ∗×V ds (10)

for all t ∈ (0, T ), where ξ(s) = γ̄ ∗w(s) and w(s) ∈ ∂J (s, γ̄ u(s)) for a.e. s ∈
(0, t). Using the inequality ‖u(s)‖ � ‖u0‖ + ∫ s

0 ‖u′(τ )‖dτ , the estimate (2)
and again the Young inequality, we get

∣
∣
∣

∫ t

0
〈ξ(s), u′(s)〉V ∗×V ds

∣
∣
∣

�
∫ t

0
|〈w(s), γ̄ u′(s)〉L2(�;RN)|ds

�
∫ t

0
c1(1+β‖γ̄ ‖‖u(s)‖)β‖γ̄ ‖‖u′(s)‖ds

�
∫ t

0
c1

[

(1+β‖γ̄ ‖‖u0‖)+β‖γ̄ ‖
∫ s

0
‖u′(τ )‖dτ

]

‖γ̄ ‖β‖u′(s)‖ds

�
∫ t

0

[
ε2

2
‖u′(s)‖2 + 1

2ε2
(c1β‖γ̄ ‖(1+β‖γ̄ ‖‖u0‖))2

]

ds +

+ c1β
2‖γ̄ ‖2

(∫ t

0
‖u′(s)‖ds

)2

,
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where β >0 is such that ‖v‖Z �β‖v‖V for all v ∈V and ε>0. By virtue of
the Jensen inequality applied to the latter term, we have

∣
∣
∣

∫ t

0
〈ξ(s), u′(s)〉V ∗×V ds

∣
∣
∣

� ε2

2
‖u′‖2

L2(0,t;V )
+ 1

2ε2
(c1β‖γ̄ ‖(1+β‖γ̄ ‖‖u0‖)2)

+ c1β
2T ‖γ̄ ‖2‖u′‖2

L2(0,t;V )
.

Hence and from (10) we get

1
2
|u′(t)|2 +

(

α − ε2

2

)

‖u′‖2
L2(0,t;V )

� 1
2
|u1|2 + 1

2
‖B‖L(V ,V ∗)‖u0‖2 + ε2

2
‖u′‖2

L2(0,t;V )

+ 1
2ε2

[‖f ‖2
V∗ + c1β‖γ̄ ‖(1+β‖γ̄ ‖‖u0‖)2]+ c1β

2T ‖γ̄ ‖2‖u′‖2
L2(0,t;V )

for all t ∈ (0, T ). We choose ε>0 such that α−ε2 = α
2 . Thus for such ε and

from the hypothesis (H1), we obtain

‖u′‖L2(0,t;V ) � c2(1+‖u0‖+ |u1|+‖f ‖v∗) (11)

with c2 >0. Hence, we get

‖u(t)‖�‖u0‖+
∫ t

0
‖u′(s)‖ds �‖u0‖+

√
T c2(1+‖u0‖+ |u1|+‖f ‖v∗)

which implies

‖u‖C(0,T ;V ) � c3(1+‖u0‖+ |u1|+‖f ‖v∗) with c3 >0. (12)

To end the proof it is enough to show the bound on ‖u′′‖V∗ . Since u is a
solution to (8), from H(A)(ii), H(B) and (2), we have

‖u′′‖V∗ �‖f ‖V∗+ā1 + b̄1‖u′‖V +‖B‖L(V ,V ∗)‖u‖V
+β̃c1‖γ̄ ‖(1+β‖γ̄ ‖‖u‖V) (13)

where β̃ is the embedding constant of Z∗ into V∗, ā1 = √
2‖a1‖L2(0,T ) and

b̄1 =√
2b2

1. Combining (11), (12) and (13), we readily deduce (9).

THEOREM 6. If hypotheses H(A), H(B), H(j), (H0) and (H1) hold, then
the problem (8) has a solution.
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Proof. First we reduce the order of the problem (8). Consider the oper-
ator K : V → C(0, T ;V ) defined by Kv(t) = ∫ t

0 v(τ) dτ + u0 for v ∈ V . The
problem (8) can be formulated as follows






find z∈W such that
z′(t)+A(t, z(t))+B(Kz(t))+ γ̄ ∗(∂J (t, γ̄ (Kz(t))))�f (t)

a.e. t ∈ (0, T )

z(0)=u1.

(14)

We observe that z is a solution to (14) if and only if u=Kz satisfies (8).
Therefore, in what follows, we will show the existence of solutions to (14).
To this end we apply a surjectivity result for L pseudomonotone operators
(see Proposition 1). First we consider the case with regular initial condition
u1 ∈V .

Step 1. Let us assume that u1 ∈V . Performing a translation by the initial
condition, we define the following operators

{
A1 : V →V∗

(A1v)(t)=A(t, v(t)+u1) for v ∈V,
(15)

{
B1 : V →V∗

(B1v)(t)=B(K(v +u1)(t)) for v ∈V,
(16)






N1 : V →2V∗

N1v ={w ∈Z∗ : w(t)∈ γ̄ ∗(∂J (t, γ̄ (K(v +u1)(t))))

a.e. t ∈ (0, T )}.
(17)

Here v +u1 is understood as follows (v +u1)(t)=v(t)+u1. Let us observe
that A1v = A(v + u1) and B1v = B(K(v + u1)), where A and B are the
Nemytski operators corresponding to A and B, respectively, i.e.

(Av)(t)=A(t, v(t)), (Bv)(t)=B(v(t)) for v ∈V. (18)

In a consequence, from (14) we obtain the following inclusion
{

z′ +A1z+B1z+N1z�f

z(0)=0.
(19)
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and note that z∈W solves (14) if and only if z−u1 ∈W solves (19). Let us
consider the operator L : D(L) ⊂ V → V∗ defined by Lv = v′ with D(L) =
{v ∈ W : v(0) = 0}. Recall (see e.g. Zeidler [38], Proposition 32.10, p. 855)
that L is a linear, densely defined and maximal monotone operator. Let the
operator T : V →2V∗

be given by

T z=A1z+B1z+N1z.

Now the problem (19) reads as follows:

find z∈D(L) such that Lz+T z�f.

In order to show the existence of a solution to (19) we will prove that the
operator T is bounded, coercive and L pseudomonotone, and apply Prop-
osition 1. We will state the following three lemmas on the properties of the
operators A1, B1 and N1, respectively. The proofs will be postponed to Sec-
tion 5.

LEMMA 7.
If H(A) holds and u1 ∈V , then the operator A1 defined by (15) satisfies:

(a) ‖A1v‖V∗ � â1 + b̂1‖v‖V for all v ∈V with â1 �0 and b̂1 >0;
(b) 〈〈A1v, v〉〉V∗×V � α

2 ‖v‖2
V − β̂2‖v‖V − β̂3 for all v ∈ V with β̂2 � 0

and β̂3 �0;
(c) A1 is demicontinuous;
(d) A1 is L pseudomonotone; If H(A) holds, then the operator A defined by

(18) satisfies
(e) For every sequence {vn} ⊂ W with vn → v weakly in W and

lim sup 〈〈Avn, vn − v〉〉V∗×V � 0, it follows that Avn → Av weakly
in V∗ and 〈〈Avn, vn〉〉V∗×V →〈〈Av, v〉〉V∗×V .

LEMMA 8.
If H(B) holds and u1 ∈V , then the operator B1 defined by (16) satisfies:

(a) ‖B1v‖V∗ � ĉ1(1+‖v‖V) for all v ∈V with ĉ1 >0;
(b) ‖B1v −B1w‖V∗ � ĉ2‖v −w‖V for all v,w ∈V with ĉ2 >0;
(c) 〈〈B1v, v〉〉V∗×V �−ĉ3‖v‖V − ĉ4 for all v ∈V with ĉ3 �0 and ĉ4 �0;
(d) B1 is monotone;
(e) B1 is weakly continuous, i.e., for any sequence {vn} ⊂ V with vn → v

weakly in V , we have B1vn →B1v weakly in V∗; If H(B) holds, then the
operator B defined by (18) satisfies

(f) 〈〈Bv −Bw,v′ −w′〉〉V∗×V �0 for all v, w ∈W .



BOUNDARY HYPERBOLIC HEMIVARIATIONAL INEQUALITIES 517

LEMMA 9. If H(j) holds and u1 ∈V , then the operator N1 defined by (17)
satisfies:

(a) ‖w‖Z∗ � ĉ5(1+‖v‖V) for all w ∈N1v and v ∈V with ĉ5 >0;
(b) for each v∈V,N1v is a nonempty convex and weakly compact subset of

Z∗;
(c) 〈〈w,v〉〉V∗×V � −c1Tβ2‖γ̄ ‖2‖v‖2

V − ĉ6‖v‖V for all w ∈ N1v and v ∈ V
with ĉ6 >0;

(d) if vn, v ∈ V, vn → v in Z,wn,w ∈ Z∗,wn → w weakly in Z∗ and
wn ∈N1vn, then w ∈N1v.

We continue the proof of the theorem.

CLAIM 1. T is a bounded operator.

The fact that the operator T maps bounded subsets of V into bounded
subsets of V∗ follows from Lemma 7(a), Lemma 8(a), Lemma 9(a) and the
continuity of the embedding Z∗ ⊂V∗.

CLAIM 2. T is coercive.

Let v ∈V and η∈T v, i.e., η=A1v +B1v + ξ with ξ ∈N1v. From Lemma
7(b), Lemma 8(c) and Lemma 9(c), we have

〈〈η, v〉〉V∗×V =〈〈A1v, v〉〉V∗×V +〈〈B1v, v〉〉V∗×V +〈〈ξ, v〉〉V∗×V
� α

2
‖v‖2

V − β̂2‖v‖V − β̂3 − ĉ3‖v‖V − ĉ4 − c1Tβ2‖γ̄ ‖2‖v‖2
V

− ĉ6‖v‖V .

Due to the hypothesis (H1), this immediately shows the coercivity of T .

CLAIM 3. T is L pseudomonotone.

From Lemma 9(b) it follows that for every v∈V , T v is a nonempty con-
vex and weakly compact subset of V∗. We prove that T is upper semi-
continuous in V ×V∗

weak topology. To this end, we show that if a set D is
weakly closed in V∗, then the set

T −(D)={v ∈V : T v ∩D �=∅} is closed in V.

Let {vn}⊂T −(D) and assume that vn → v in V . We can find ηn ∈T vn ∩D

for all n∈N and by definition

ηn =A1vn +B1vn + ξn with ξn ∈N1vn. (20)
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Since {vn} is bounded in V and T is a bounded multifunction (cf. Claim 1),
then the sequence {ηn} is bounded in V∗. Hence we may suppose that

ηn →η weakly in V∗ with η∈D (21)

because D is weakly closed in V∗. Moreover, by Lemma 9(a) we know that
{ξn} is bounded in Z∗ and again we may assume that

ξn → ξ weakly in Z∗ with ξ ∈Z∗. (22)

Hence and from the fact that vn →v in Z (recall that V ⊂Z continuously),
by Lemma 9(d), we obtain ξ ∈N1v. Next, using the demicontinuity of A1

(cf. Lemma 7(c)) and the continuity of B1 (cf. Lemma 8(b)), we have

A1vn →A1v weakly in V∗,
B1vn →B1v in V∗.

From these convergences, (21) and (22), passing to the limit in (20) we get

η=A1v +B1v + ξ with ξ ∈N1v

which means that η ∈ T v ∩ D, so v ∈ T −(D). This proves that T −(D) is
closed in V , hence T is upper semicontinuous from V into V∗

weak.
To conclude the proof that T is L pseudomonotone, it is enough to show

the condition (d) in the definition of pseudomonotonicity (see Preliminar-
ies). Let {zn}⊂D(L), zn → z weakly in W , ηn ∈ T zn, ηn → η weakly in V∗

and assume that

lim sup〈〈ηn, zn − z〉〉V∗×V �0. (23)

So we have ηn =A1zn +B1zn + ξn with ξn ∈N1zn for all n∈N.
Since N1 is a bounded map (cf. Lemma 9(a)) and {zn} is bounded in V ,

we infer that {ξn} remains in a bounded subset of Z∗. By passing to a sub-
sequence, if necessary, we may suppose that

ξn → ξ weakly in Z∗. (24)

Since V ⊂ Z compactly, from Theorem 5.1, Chapter 1 of Lions [15], we
have that W ⊂Z compactly. Thus we may assume that

zn → z in Z. (25)

From (24), (25) and Lemma 9(d) we deduce that ξ ∈ N1z. From Lemma
9(a) and (25), we have
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|〈〈ξn, zn − z〉〉Z∗×Z |�‖ξn‖Z∗‖zn − z‖Z � c̃5 (1+‖zn‖V)‖zn − z‖Z →0.

(26)

On the other hand, by the monotonicity of B1 (cf. Lemma 8(d)) and (25),
we obtain

lim sup〈〈B1zn, z− zn〉〉V∗×V � lim sup〈〈B1z, z− zn〉〉V∗×V =0. (27)

Combining the condition (23) with (26) and (27), we infer that

lim sup〈〈A1zn, zn − z〉〉V∗×V � lim sup〈〈ηn, zn − z〉〉V∗×V
+ lim sup〈〈B1zn, z− zn〉〉V∗×V
+ lim sup 〈〈ξn, z− zn〉〉V∗×V �0.

From the L pseudomonotonicity of A1 (cf. Lemma 7(d)), we have

A1zn →A1z weakly in V∗ (28)

and

〈〈A1zn, zn〉〉V∗×V →〈〈A1z, z〉〉V∗×V or equivalently
〈〈A1zn, zn − z〉〉V∗×V =0.

(29)

Hence and from (28), the weak continuity of B1 (cf. Lemma 8(e)) and
(24), we conclude that

ηn =A1zn +B1zn + ξn →A1z+B1z+ ξ =η weakly in V∗.

This together with ξ ∈N1z implies η∈T z.
Moreover, we also have

〈〈B1zn, zn〉〉V∗×V →〈〈B1z, z〉〉V∗×V (30)

Indeed, from (23), (26) and (29), we get

lim sup〈〈B1zn, zn − z〉〉V∗×V � lim sup〈〈ηn, zn − z〉〉V∗×V
− lim〈〈A1zn, zn − z〉〉V∗×V
− lim〈〈ξn, zn − z〉〉V∗×V �0

which together with (27) implies lim〈〈B1zn, zn − z〉〉V∗×V = 0, so also (30).
Passing to the limit in the equation

〈〈ηn, zn〉〉V∗×V =〈〈A1zn, zn〉〉V∗×V +〈〈B1zn, zn〉〉V∗×V +〈〈ξn, zn〉〉V∗×V
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from (29), (30) and (26), we obtain lim〈〈ηn, zn〉〉V∗×V →〈〈η, z〉〉V∗×V with η∈
T z. This proves the L pseudomonotonicity of T .

Since V is a strictly convex Banach space (this follows from the fact that
in every reflexive Banach space there exists an equivalent norm such that
this space is strictly convex, see Zeidler [38], p. 256), from Claims 1, 2, 3,
by Proposition 1, we deduce that the problem (19) has a solution z∈D(L),
so z+u1 solves (14), and u=K(z+u1) is a solution of (8) in the case when
u1 ∈V .

Step 2. Let us assume that u1 ∈H . By the density of V in H , we can find
a sequence {u1n}⊂V such that u1n →u1 in H , as n→∞. Consider
a solution un of the problem (8), when u1 is replaced by u1n, i.e. a
solution of the following problem






find un ∈V such that u′
n ∈W and

u′′
n(t)+A(t, u′

n(t))+Bun(t)+ γ̄ ∗(∂J (t, γ̄ un(t)))�f (t) a.e. t ∈ (0, T )

un(0)=u0, u′
n(0)=u1n.

The existence of un, for n∈N, follows from the first part of the proof. We
have

u′′
n(t)+A(t, u′

n(t))+Bun(t)+ ξn(t)=f (t) for a.e. t ∈ (0, T )

or equivalently

u′′
n +Au′

n +Bun + ξn =f in V∗ (31)

with ξn ∈Nun and the initial conditions un(0)=u0, u′
n(0)=u1n. Recall that

A and B are the Nemitsky operators corresponding to A and B, respec-
tively, (cf. (18)) and N : V →2V∗

is given by

N v ={w ∈Z∗ : w(t)∈ γ̄ ∗(∂J (t, γ̄ v(t))) a.e. t ∈ (0, T )} for v ∈V.

From Lemma 5, we have

‖un‖C(0,T ;V ) +‖u′
n‖W �C(1+‖u0‖+ |u1n|+‖f ‖V∗).

Since {u1n} is bounded in H , we get that {un}, {u′
n} are bounded respec-

tively in V and W uniformly with respect to n. Hence, by passing to a sub-
sequence if necessary, we assume

un →u weakly in V,

u
′
n →u

′
weakly in V,

u
′′
n →u

′′
weakly in V∗.
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We will show that u is a solution to the problem (8).
Since un → u, u′

n → u′ both weakly in W and W ⊂ C(0, T ;H) continu-
ously we get un(t) → u(t) and u′

n(t) → u′(t) both weakly in H for all t ∈
[0, T ]. Hence u0 = un(0) → u(0) weakly in H , which gives u(0) = u0. Also
from the convergences u1n →u1 in H and u1n =u′

n(0)→u′(0) weakly in H ,
we get u′(0)=u1. Next, from ξn ∈Nun we have ξn(t)= γ̄ ∗zn(t) and

zn(t)∈ ∂J (t, γ̄ un(t)) a.e. t ∈ (0, T ). (32)

Similarily as in Lemma 9(a), using (2), we get that {zn} remains in a
bounded subset of L2(0, T ;L2(�;R

N)), and so for a subsequence we may
assume

zn → z weakly in L2(0, T ;L2(�;R
N)). (33)

Moreover, we obtain

ξn → ξ weakly in Z∗. (34)

Using the last two convergences from ξn(t)= γ̄ ∗zn(t) for a.e. t ∈ (0, T ), pass-
ing to the limit, we get ξ(t)= γ̄ ∗z(t) a.e. t ∈ (0, T ). Since W ⊂Z compactly
and un →u weakly in W , we obtain un →u in Z, and subsequently un(t)→
u(t) in Z for a.e. t ∈ (0, T ) and

γ̄ (un(t))→ γ̄ (u(t)) in L2(�;R
N) for a.e. t ∈ (0, T ). (35)

Exploiting (33) and (35) and passing to the limit in (32), we deduce (cf.
again the Convergence Theorem of Aubin and Cellina [1]) that z(t) ∈
∂J (t, γ̄ u(t)) for a.e. t ∈ (0, T ), which clearly implies ξ ∈Nu.

The proof now ends with the passing to the limit in (31). For this pur-
pose, by using Lemma 7(e) we will show

Au′
n →Au′ weakly in V∗. (36)

Since lim〈〈f,u′
n − u′〉〉V∗×V = 0 and lim〈〈ξn, u

′
n − u′〉〉Z∗×Z = 0 (recall ξn → ξ

weakly in Z∗ and u′
n →u′ in Z), from (31) we have

lim sup 〈〈Au′
n, u

′
n −u′〉〉V∗×V

� lim sup〈〈u′′
n, u

′ −u′
n〉〉V∗×V + lim sup〈〈Bun, u

′ −u′
n〉〉V∗×V . (37)

Using the equality (cf. Proposition 23.23(iv) of Zeidler [38], p. 422)

〈〈u′′
n −u′′, u′

n −u′〉〉V∗×V = 1
2

∫ T

0

d
dt

|u′
n(t)−u′(t)|2 dt

= 1
2
|u′

n(T )−u′(T )|2 − 1
2
|u′

n(0)−u′(0)|2,
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we obtain

lim sup 〈〈u′′
n −u′′, u′ −u′

n〉〉V∗×V �0. (38)

On the other hand, by property (f) of Lemma 8, we have

lim sup〈〈Bun, u
′ −u′

n〉〉V∗×V = lim sup (−〈〈Bu−Bun, u
′ −u′

n〉〉V∗×V
+〈〈Bu,u′ −u′

n〉〉V∗×V)� lim sup 〈〈Bu,u′ −u′
n〉〉V∗×V =0. (39)

Consequently, by exploiting (38) and (39) in (37), we get lim sup 〈〈Au′
n, u

′
n

−u′〉〉V∗×V � 0. Since u′
n → u′ weakly in W , we apply Lemma 7(e) and

obtain (36).
By using (34), (36) and the weak continuity of B (cf. Lemma 8(e)), we

pass to the limit in (31) and obtain u′′ + Au′ + Bu + ξ = f in V∗. This
together with the conditions ξ ∈ Nu, u(0) = u0 and u′(0) = u1 implies that
u is a solution to the problem (8). The proof of the theorem is com-
plete.

In the remaining part of this section, we deal with the problem (II). The
approach to prove existence of solutions to (II) is analogous to that we
used for problem (I). We formulate the following inclusion:






find u∈V with u′ ∈W such that
u′′(t)+A(t, u′(t))+Bu(t)+ γ̄ ∗ (

∂J (t, γ̄ u′(t))
)�f (t)

a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1.

(40)

The definition of the solution to (40) can be stated analogously to Defini-
tion 3. We also remark that every solution to problem (40) is a solution to
(II). We begin with a priori bounds for solutions of (40).

LEMMA 10. Assume the hypotheses H(A), H(B), H(j), (H0) hold and

α

2
>c1β

2‖γ̄ ‖2, (H̃1)

where β >0 is the embedding constant of V into Z. If u is a solution to (40),
then

‖u‖C(0,T ;V ) +‖u′‖W ≤C (1+‖u0‖+ |u1|+‖f ‖V∗) .

with a positive constant C.



BOUNDARY HYPERBOLIC HEMIVARIATIONAL INEQUALITIES 523

Proof. Similarily as in the proof of Lemma 5, we obtain

1
2
|u′(t)|2 − 1

2
|u1|2 +α‖u′‖2

L2(0,t;V )
− 1

2
‖B‖L(V ,V ∗)‖u0‖2

� ε2

2
‖u′‖2

L2(0,t;V )
+ 1

2ε2
‖f ‖2

V∗ −
∫ t

0
〈ξ(s), u′(s)〉V ∗×V ds

for all t ∈ (0, T ) and ε>0, where ξ(s)= γ̄ ∗w(s) and w(s)∈∂J (s, γ̄ u′(s)) for
a.e. s ∈ (0, t). From (2) and the Young inequality, we have

∣
∣
∣

∫ t

0
〈ξ(s), u′(s)〉V ∗×V ds

∣
∣
∣≤

∫ t

0
|〈w(s), γ̄ u′(s)〉L2(�;RN)|ds

�
∫ t

0
c1(1+β‖γ̄ ‖‖u′(s)‖)β‖γ̄ ‖‖u′(s)‖ds

≤
∫ t

0
(c1β‖γ̄ ‖‖u′(s)‖+ c1β

2‖γ̄ ‖2‖u′(s)‖2)ds

� ε2

2
‖u′‖2

L2(0,t;V )
+ 1

2ε2
T c2

1β
2‖γ̄ ‖2 + c1β

2‖γ̄ ‖2‖u′‖2
L2(0,t;V )

.

Choosing ε>0 such that α −ε2 = α
2 and then making use of the hypothesis

(H̃1), we obtain

‖u′‖L2(0,t;V ) � c2 (1+‖u0‖+ |u1|+‖f ‖V∗)

with c2 > 0. The remaining conclusions of the proof can be done analo-
gously as in Lemma 5. This completes the proof of the lemma.

THEOREM 11. Under the assumptions H(A), H(B), H(j), (H0) and (H̃1),
the problem (40) has a solution.

Proof. We proceed as in the proof of Theorem 6. Using the operator
K : V →C(0, T ;V ) defined by Kv(t)= ∫ t

0 v(τ) dτ +u0 for v ∈V , we formu-
late the problem (40) as follows:






Find z∈W such that
z′(t)+A(t, z(t))+B(Kz(t))+ γ̄ ∗(∂J (t, γ̄ z(t)))�f (t)

for a.e. t ∈ (0, T )

z(0)=u1.

(41)

We notice that z is a solution to (41) if and only if u=Kz satisfies (40). To
prove the existence to (40), we apply Proposition 1 to the problem (41).
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Step 1. Let us suppose that u1 ∈V . We define the operators A1, B1 and N2

respectively by (15), (16) and





N2 :V →2V∗

N2v ={w ∈Z∗ : w(t)∈ γ̄ ∗(∂J (t, γ̄ (v +u1)(t)))

a.e. t ∈ (0, T )}.
(42)

The problem (41) we rewrite as follows:
{

z′ +A1z+B1z+N2z � f

z(0)=0.
(43)

and remark that z ∈ W solves (41) if and only if z − u1 ∈ W solves
(43). Next we formulate the problem (43) as an operator inclusion:

find z∈D(L) such that Lz+ T̃ z�f,

where T̃ : V → 2V∗
is given by T̃ z = A1z + B1z + N2z. The following

result shows that N2 has properties analogous to N1 (cf. Lemma 9).

LEMMA 12. If H(j) holds and u1 ∈V , then the operator N2 given by (42)

satisfies:

(a) ‖w‖Z∗ � c̄(1+‖v‖V) for all w ∈N2v and v ∈V with c̄ >0;
(b) for every v∈V,N2v is a nonempty convex and weakly compact subset of

Z∗;
(c) 〈〈w,v〉〉V∗×V � −c1β

2‖γ̄ ‖2‖v‖2
V − ĉ ‖v‖V for all w ∈ N2v and v ∈ V with

ĉ >0;
(d) for every vn, v ∈V with vn →v in Z and every wn, w∈Z∗ with wn →w

weakly in Z∗, if wn ∈N2vn, then w ∈N2v.

Using Lemmas 7, 8 and 12, it can be proved (analogously as in Claims
1, 2 and 3 of Theorem 6) that T̃ is a bounded, coercive and L pseudo-
monotone operator. We comment only on the coercivity of T̃ . Namely, if
v ∈ V and η ∈ T̃ v, then η = A1v + B1v + ξ with ξ ∈ N2v. By Lemma 7(b),
Lemma 8(c) and Lemma 12(c), we obtain

〈〈η, v〉〉V∗×V�α

2
‖v‖2

V−β̂2‖v‖V−β̂3−ĉ3‖v‖V−ĉ4−c1β
2‖γ̄ ‖2‖v‖2

V−ĉ‖v‖V .

Hence and from the hypothesis (̃H1) we deduce coercivity of T̃ . By Propo-
sition 1 we now infer that the problem (43) admits a solution z∈D(L) and
subsequently that u=K(z+u1) solves the problem (40).
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Step 2. We assume that u1 ∈H . In this case the existence proof uses the a
priori estimate of Lemma 10, Lemma 12 and it is the repetition of
Step 2 of Theorem 6 with some minor modifications.

5. Proofs of Lemmas

In this section we give the proofs of properties of the operators A1, B1, N1

and N2 which we used in the previous section.

Proof of Lemma 7. The property (a) follows easily from H(A)(ii) and (i).
For part (b) we have

〈〈A1v, v〉〉=
∫ T

0
(〈A(t, v(t)+u1), v(t)+u1〉−〈A(t, v(t)+u1), u1〉) ds

�α

∫ T

0

1
2
‖v(t)‖2dt−‖u1‖2−‖a‖L1(0,T )−b1‖u1‖

∫ T

0
‖v(t)+u1‖dt

� α

2
‖v‖2

V − β̂2‖v‖V − β̂3.

Here we have used H(A)(iii) and (ii), and the inequality |a +b|2 � 1
2 |a|2 −

|b|, a, b∈R.
Proof of (c). By H(A)(ii) the operator v → A(t, v) is bounded. From

Proposition 27.7, p. 588 of Zeidler [38] we know that a pseudomonotone
and locally bounded operator is demicontinuous. Now exploiting the demi-
continuity of v →A(t, v) and H(A)(i) and (ii) by Lemma 1 of Berkovitz
and Mustonen [3], we obtain that A1 is demicontinuous.

The property (d) was proved by Berkovitz and Mustonen [3] in Theorem
2(b).

Proof of (e). The condition (e) is close to a condition of pseudomonot-
onicity of A except the fact that we do not require the sequence {vn} to
be in D(L) but only in W . Since the condition vn(0)=0 does not play any
role in the proof of pseudomonotonicity of A, the proof of (e) is a repeti-
tion of the one of Theorem 2(b) of Berkovitz and Mustonen [3] (see also
Lemma 1.9 of Ochal [29]).

Proof of Lemma 8. In the proof we use the following properties of the
(nonlinear) operator K : V →C(0, T ;V ):

‖Kv‖C(0,T ;V ) �
√

T ‖v‖V +‖u0‖ for all v ∈V, (K1)

‖Kv −Kw‖C(0,T ;V ) �
√

T ‖v −w‖W for all v,w ∈V (K2)

We start with (a). Let v ∈V . Using (K1), we have
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‖B1v‖2
V∗ =

∫ T

0
‖B(K(v +u1)(t))‖2

V ∗ dt

�‖B‖2
L(V ,V ∗)

∫ T

0
‖K(v +u1)(t)‖2 dt

�T ‖B‖2
L(V ,V ∗)

(√
T ‖v +u1‖V +‖u0‖

)2
.

Hence ‖B1v‖V∗ �
√

T ‖B‖L(V ,V ∗)(
√

T ‖v +u1‖V +‖u0‖) and the condition (a)
follows. In order to obtain (b), we use (K2) and for v, w ∈V we have

‖B1v −B1w‖2
V∗ =

∫ T

0
‖B(K(v +u1)(t))−B(K(w +u1)(t))‖2

V ∗ dt

≤‖B‖2
L(V ,V ∗)

∫ T

0
‖K(v +u1)(t)−K(w +u1)(t)‖2 dt

≤T 2‖B‖2
L(V ,V ∗)‖v −w‖2

V .

This implies condition (b).
Next, since B is symmetric and positive, and K is bounded (cf. (K1)), we get

〈〈B1v, v〉〉V∗×V =
∫ T

0
〈B(K(v +u1)(t)), (K(v +u1))

′(t)−u1〉V ∗×V dt

= 1
2

∫ T

0

d
dt

〈B(K(v +u1)(t)),K(v +u1)(t)〉V ∗×V dt

−
∫ T

0
〈B(K(v +u1)(t)), u1〉V ∗×V dt

�−T ‖B‖L(V ,V ∗)‖u1‖‖K(v +u1)‖C(0,T ;V )

�−T ‖B‖L(V ,V ∗)‖u1‖
(√

T ‖v +u1‖V +‖u0‖
)

for all v ∈V , which proves the property (c).
Using the monotonicity and symmetry of B and the product rule we

obtain for all v, w ∈V

〈〈B1v −B1w,v −w〉〉V∗×V =
∫ T

0
〈B(K(v +u1)(t))−B(K(w +u1)(t)),

(K(v +u1))
′(t)− (K(w +u1))

′(t)〉V ∗×V dt

= 1
2

∫ T

0

d
dt

〈B(K(v +u1)(t))−B(K(w +u1)(t)),

K(v +u1)(t)−K(w +u1)(t)〉V ∗×V dt

= 1
2
〈B(K(v +u1)(T ))−B(K(w +u1)(T )),

K(v +u1)(T )−K(w +u1)(T )〉V ∗×V �0,

which shows the monotonicity of B1.
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Now we show that B1 is weakly continuous. Let {vn} be a sequence in
V such that vn → v weakly in V . Since the operator G : V → V given by
(Gw)(t) = ∫ t

0 w(s)ds for all w ∈ V and t ∈ (0, T ) is linear and continuous,
we have

∫ t

0 vn(s)ds → ∫ t

0 v(s)ds weakly in V . Hence for t ∈ (0, T ) we have
K(vn +u1)(t)→K(v +u1)(t) weakly in V and B(K(vn +u1)(t))→B(K(v +
u1)(t)) weakly in V ∗. In view of the condition (a), we can apply the dom-
inated convergence theorem and we get

〈〈B1vn, ϕ〉〉V∗×V =
∫ T

0
〈B(K(vn +u1)(t)), ϕ(t)〉V ∗×V dt

→
∫ T

0
〈B(K(v +u1)(t)), ϕ(t)〉V ∗×V dt =〈〈B1v,ϕ〉〉V∗×V

for all ϕ ∈V . Hence B1vn →B1v weakly in V∗.
To prove property (f), we observe that by the positivity and symmetry of

B, for v, w ∈W we have

〈〈Bv −Bw,v′ −w′〉〉V∗×V = 1
2

∫ T

0

d
dt

〈Bv(t)−Bw(t), v(t)−w(t)〉V ∗×V dt

= 1
2
〈Bv(T )−Bw(T ), v(T )−w(T )〉V ∗×V �0.

This completes the proof of Lemma 8.

Proof of Lemma 9. Proof of (a). Let v ∈ V and w ∈ N1v. Hence w(t) =
γ̄ ∗z(t) and z(t) ∈ ∂J (t, γ̄ (K(v + u1)(t))) for a.e. t ∈ (0, T ). Using (2) and
(K1) we have

‖z(t)‖L2(�;RN) � c1
(
1+‖γ̄ (K(v +u1)(t))‖L2(�)

)

� c1 (1+‖γ̄ ‖‖K(v+u1)(t)‖Z)� c1
(
1+β‖γ̄ ‖‖K(v +u1)(t)‖

)

� c1
(
1+β‖γ̄ ‖(

√
T ‖v +u1‖V +‖u0‖

))
.

Hence

‖w‖Z∗ =
(∫ T

0
‖γ̄ ∗z(t)‖2

Z∗ dt

)1/2

�‖γ̄ ∗‖
(∫ T

0
‖z(t)‖2

L2(�;RN)
dt

)1/2

� c1

√
T ‖γ̄ ∗‖(1+β‖γ̄ ‖(

√
T ‖v +u1‖V +‖u0‖

))
(44)

which proves the property (a).
We now demonstrate the property (b). It is well known (see Proposition

2.1.2 of Clarke [8]) that the values of ∂J (t, ·) are nonempty, weakly com-
pact and convex subsets of L2(�;R

N). Hence for every v∈V the set N1v is
nonempty and convex in Z∗. To prove that N1v is weakly compact in Z∗,
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we will show that it is closed in Z∗. In fact, let v ∈V , {wn}⊂N1v, wn →w

in Z∗. Then passing to a subsequence if necessary, we have wn(t)→w(t) in
Z∗ for a.e. t ∈ (0, T ). Since

wn(t)∈ γ̄ ∗(∂J (t, γ̄ (K(v +u1)(t)))) for a.e. t ∈ (0, T )

and the latter is a closed subset of Z∗, we get

w(t)∈ γ̄ ∗(∂J (t, γ̄ (K(v +u1)(t)))) for a.e. t ∈ (0, T ).

Hence w ∈N1v. Consequently, the set N1v is closed in Z∗ and convex, so
it is also weakly closed in Z∗. Since (cf. the property (a)) N1v is a bounded
set in a reflexive Banach space Z∗, we obtain that N1v is weakly compact
in Z∗.

Next, we will show (c). Let v ∈ V and w ∈ N1v. So w(t) = γ̄ ∗z(t) and
z(t)∈∂J (t, γ̄ (K(v+u1)(t))) for a.e. t ∈ (0, T ). Exploiting the inequality (44),
we get

|〈〈w,v〉〉V∗×V |= |〈〈w,v〉〉Z∗×Z |�β‖w‖Z∗‖v‖V
� c1

√
T β‖v‖V‖γ̄ ∗‖(1+β‖γ̄ ‖

√
T ‖v‖V +β‖γ̄ ‖

√
T ‖u1‖

+β‖γ̄ ‖‖u0‖)
� c1Tβ2‖γ̄ ‖2‖v‖2

V + c̃ ‖v‖V

with c̃ >0. Hence

〈〈w,v〉〉V∗×V �−c1Tβ2‖γ̄ ‖2‖v‖2
V − c̃ ‖v‖V .

In order to prove (d), let wn ∈N1vn with vn, v ∈V , vn →v in Z and wn,
w∈Z∗, wn →w weakly in Z∗. First, by the definition of K and the Jensen
inequality, we have

‖K(vn +u1)−K(v +u1)‖2
Z

=
∫ T

0

∥
∥
∥

∫ t

0
vn(s)ds +u1t +u0 −

∫ t

0
v(s)ds −u1t −u0

∥
∥
∥

2

Z
dt

=
∫ T

0

∥
∥
∥

∫ t

0
(vn(s)−v(s))ds

∥
∥
∥

2

Z
dt �T 2

∫ T

0
‖vn(s)−v(s)‖2

Z ds =T 2‖vn−v‖2
Z .

Hence K(vn + u1) → K(v + u1) in Z and passing to a subsequence if nec-
essary, we have K(vn + u1)(t) → K(v + u1)(t) in Z for a.e. t ∈ (0, T ). This
entails that

γ̄ (K(vn +u1)(t))→ γ̄ (K(v +u1)(t)) in L2(�;R
N) for a.e. t ∈ (0, T )

(45)
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Next, we have

wn(t)= γ̄ ∗zn(t) (46)

with

zn(t)∈ ∂J (t, γ̄ (K(vn +u1)(t)))) for a.e. t ∈ (0, T ). (47)

From (45), (47) and (2) we deduce that {zn} is bounded in L2(0, T ;L2(�;R
N))

and so we may suppose that

zn → z weakly in L2(0, T ;L2(�;R
N)) (48)

for some z ∈L2(0, T ;L2(�;R
N)). Using (48) and the convergence wn →w

weakly in Z∗, from (46) we obtain w(t)= γ̄ ∗z(t) for a.e. t ∈ (0, T ). More-
over, taking into account (45), (48) and the fact that ∂J (t, ·) is upper semi-
continuous with closed, convex values, we apply the Convergence The-
orem of Aubin and Cellina [1] to the inclusion (47). We obtain z(t) ∈
∂J (t, γ̄ (K(v +u1)(t))) for a.e. t ∈ (0, T ), which implies w ∈N1v. The proof
of the lemma is complete.

Proof of Lemma 12. It is similar to the one of Lemma 9. We restrict our-
selves to the proof of the property (c). So let v ∈ V and w ∈ N1v. Hence
w(t)= γ̄ ∗z(t) with z(t)∈ ∂J (t, γ̄ (v +u1)(t)) for a.e. t ∈ (0, T ). Using (2) we
obtain

‖z(t)‖L2(�;RN) � c1(1+β‖γ̄ ‖‖v(t)+u1‖)

and subsequently

‖w‖Z∗ �‖γ̄ ∗‖
(∫ T

0
‖z(t)‖2

L2(�;RN)
dt

)1/2

� c1‖γ̄ ∗‖
(
T +β2‖γ̄ ‖2

∫ T

0
‖v(t)+u1‖2 dt

)2

� c1‖γ̄ ∗‖(
√

T +β‖γ̄ ‖‖v +u1‖V
)
.

Hence we have

|〈〈w,v〉〉V∗×V |= |〈〈w,v〉〉Z∗×Z |�β‖w‖Z∗‖v‖V � c1β
2‖γ̄ ‖2‖v‖2

V + c̃ ‖v‖V

with c̃ >0, which implies 〈〈w,v〉〉V∗×V �−c1β
2‖γ̄ ‖2‖v‖2

V − c̃ ‖v‖V .
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6. Applications

In order to apply the previous results, we will present in this section exam-
ples of dynamic viscoelastic contact problems which may be formulated in
the form of Problems (I) and (II) and such that the hypotheses of Section 4
hold. Our existence theorems are also applicable to a general problem of
viscoelastic masonry structures and to hemivariational inequalities arising
in the theory of laminated viscoelastic Kirchhoff plates (see Naniewicz and
Panagiotopoulos [28] and Panagiotopoulos [34]).

We consider a linear viscoelastic body occupying the domain � in R
N

(N = 2,3) which is acted upon by volume forces and surface tractions
and which may come in contact with a foundation on the part �C of the
boundary ∂�. We are interested in the resulting dynamical process of the
mechanical state of the body on the time interval [0, T ]. We assume that
the body is endowed with short memory (cf. Duvaut and Lions [9]) that is
the state of the stress at the instant t depends only on the strain at that
instant and at the immediately preceding instants. In this case (we use here
the summation convention), we have

σij (u)=bijhkεkh(u)+aijhk

∂

∂t
εkh(u), i, j =1, . . . ,N, (49)

where u : � × (0, T ) → R
N denotes the displacemrnt field, σ = σ(u) is the

stress tensor and the strain tensor ε=ε(u) is given by εhk(u)= 1
2(uk,h +uh,k).

The viscosity coefficients aijhk and the elasticity coefficients bijhk satisfy the
well known symmetry and ellipticity conditions. The dynamic behaviour of
the body is described by the equilibrium equation

σij,j (u)+fi =u′′
i in �× (0, T ), (50)

where f denotes the density of body force acting in �× (0, T ). We suppose
that ∂�=�D ∪�N ∪�C with meas (�D)>0. The displacement u={ui} and
the tractions F ={Fi} are prescribed on �D and �N , respectively, i.e.

{
ui =0 on �D × (0, T )

Si =Fi on �N × (0, T )
(51)

where S ={Si}, Si =σijnj denote the stress vector on �N and n={ni} is the
outward unit normal to ∂�. We assume that on a part �C of the boundary
a nonmonotone multivalued law holds between the displacement u and the
reaction −S, that is

−S ∈ ∂j (u) on �C × (0, T ), (52)
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where j is a locally Lipschitz function on R
N . Such boundary conditions

appear in models for the dynamic adhesive contact problems (see Nani-
ewicz and Panagiotopoulos [28], Panagiotopoulos [30,34], Panagiotopou-
los and Pop [35], Chau, Shillor and Sofonea [7] and the references therein,
for adhesive contact effects, unilateral contact laws and nonmonotone fric-
tional behaviour). In several classes of mechanical problems, similar bound-
ary conditions may be defined between S and the velocity, i.e.

−S ∈ ∂j

(
∂u

∂t

)

on �C × (0, T ), (53)

where again j : R
N → R is a locally Lipschitz function (we refer to Pan-

agiotopoulos [33] and Goeleven, Miettinen and Panagiotopoulos [12] for
general damped conditions and multivalued reaction–velocity laws). We
mention that all nonconvex superpotential graphs in Chapter 4.6 of Nan-
iewicz and Panagiotopoulos [28] (in particular the functions j defined as
a minimum and as a maximum of quadratic convex functions) satisfy
hypothesis H(j)(iii).

Multiplying the equilibrium equation by v ∈ V and applying the Green
theorem, we have

〈u′′(t), v〉V ∗×V +a(u′(t), v)+b(u(t), v)−
∫

�C

σn ·v dσ(x)=〈l, v〉V ∗×V

for all v ∈ V and a.e. t ∈ (0, T ), where V = {v ∈ H 1(�;R
N) : vi = 0 on

�D}, S = σn, a(u, v) = ∫

�
aijhkεij (u)εij (v)dx, b(u, v) = ∫

�
bijhkεij (u)εij (v)dx

and 〈l, v〉= ∫

�
fivi dx + ∫

�N
Fivi dσ(x). We suppose f ∈L2(�;R

N) and F ∈
L2(�N ;R

N). Together with the initial data, the variational formulation of
the problem (49)–(52) reads as follows:






〈u′′(t)+Au′(t)+Bu(t)− l, v〉V ∗×V

+ ∫

�C
j 0(γ u(t);γ v)dσ(x)�0 for all v ∈V and a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1,

(54)

where 〈Au,v〉 = a(u, v), 〈Bu,v〉 = b(u, v), u0 ∈ V and u1 ∈ H = L2(�;R
N).

Similarily, the formulation of the problem (49)–(51), (53) reads as follows:





〈u′′(t)+Au′(t)+Bu(t)− l, v〉V ∗×V

+ ∫

�C
j 0(γ u′(t);γ v)dσ(x)�0 for all v ∈V and a.e. t ∈ (0, T )

u(0)=u0, u′(0)=u1.

(55)

Invoking Theorems 6 and 11 we obtain the existence of solutions to prob-
lems (54) and (55), respectively.
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